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Analytical self-similar solutions of the Ginzburg-Landau
equation with three-order dispersion effect
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Based on the technique of the symmetry reduction, we find the asymptotic self-similarity analytical reso-
lutions from the constant coefficient Ginzburg-Landau equation considering both influences of the third-
order dispersion and gain dispersion on the evolution of pulses. We have obtained the self-similar pulse
amplitude function, phase function, strict linear chirp function, and the effective temporal pulse width.
Numerical simulations show qualitative agreement with these theoretical results.
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The latest progress of linear-chirp self-similar pulses of
parabolic asymptotic evolution has been obtained in an-
alytic theories, numerical simulations, and experimen-
tal results at rare-earth ions doped fibers amplifiers and
lasers for a decade. These results show that the self-
similar pulses have three significant properties[1−3] and
may be widely used in fibers communications, nonlin-
ear optics, ultra-fast optics, transient optics, and laser
process[4−8]. Because of self-similar features of linear
chirp and robust resisting pulse broken, the evolution
pulse energy is gradually increasing with pulse transmis-
sion. This can result in the nonlinearity and high-order
dispersion effects. Especially when the second group ve-
locity dispersion (GVD) is small in dispersion manage-
ment optic fiber amplifiers, the third-order dispersion
(TOD, β3) will play an importance role. At present,
the experimental studies of self-similar parabolic asymp-
totic pulse evolution have transformed to measure the
self-similar amplitude shape, strict linear chirp feature,
and effective temporal width. Theoretical analyses have
focused on nonlinear Schrödinger equation (NLSE)[8−14]

only considering the infinite frequency bandwidth, and
on constant and varying coefficients Ginzburg-Landau
equation (G-LE) considering the realistic influence of
doped elements effect, i.e., effect of gain media finite fre-
quency bandwidth[15,16]. There are only numerical sim-
ulations results for high-order dispersion in NLSE and
G-LE[17−22] but no report on study of the analytical res-
olutions of self-similar pulses with high-order dispersion
in G-LE to date.

In this letter, we will further theoretically investigate
self-similar pulse evolution features with the third-order
dispersion of G-LE under affection of high-order disper-
sion and gain media finite frequency bandwidth in doped
fibers. Especially, we will discuss the dynamic mecha-
nism of self-similar pulse of analytical results, and then
compare the analytical results with the simulations in
high-order dispersion of G-LE.

Suppose that the incident pulse has larger energy (but
smaller than the gain saturation energy) in the rare-earth
ions doped gained fibers, the evolution of the pulse can
be described by general G-LE[1,3,22] expressed as
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where Ψ = Ψ (z, T ) is a slowly varying amplitude of
the pulse envelope in a co-moving frame, T = t−β1z is
retarded time, z is the propagation distance. β2(>0),
β3, γ, and g(T ) are GVD, TOD, nonlinearity parameter,
and gain coefficient, respectively. g(T )

2Ω2
∂2Ψ
∂T 2 is called gain

dispersion factor which originates from the frequency de-
pendence of the gain, where Ω is the bandwidth of the
doped gained fibers.

We suppose Eq. (1) has the self-similar probe solution
of[1−3]

{
Ψ(z, T ) = A(z, T ) exp iΦ(z, T )
Φ(z, T ) = B(z) + CT 2 , (2)

where A(z, T ), Φ(z, T ), B(z), and C are amplitude func-
tion, function phase, phase offset function and chirp pa-
rameter, respectively. Substituting Eq. (2) into Eq. (1)
and comparing the real with the image part, we can get
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In order to separate variation further, we write the am-
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plitude A(z,T ) as

A(z, T ) = f(z)F (T ), (4)

where f(z) and F (T ) are spatial evolution function and
instantaneous amplitude envelop function, respectively.
Supposing g(T ) = g is a constant, we have
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Substituting Eq. (5) into the first one of Eq. (3), it can
be stated as
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Analyzing variation properties of spatial and temporal in
Eq. (6), we can get
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From the first one of Eq. (7), we can obtain f(z) =
f0 exp[(β2C +

g

2
)z] immediately. The chirp parameter

is[15,16]
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The spatial amplitude function can be stated as
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where f0 is the initial amplitude of the evolution pulse.
It has been demonstrated in the numerical researches

that the evolution pulse of amplitude envelop will deviate
parabolic asymptotic model under the conditions of the
high order dispersion. However, the amplitude envelop
profile of the evolution pulse is still self-similarity[15−18].
Therefore, in order to get instantaneous amplitude en-
velop function F (T ), we suppose

F (T ) = (1 + MT + NT 2 + LT 3), (10)

where M , N , and L are coefficients related to the doped
fibers respectively. equation (10) is the result of the third-
order power series(as we know that the parabolic asymp-
totic model of instantaneous amplitude envelop function
F (T ) is just the second-order power series). In fact,
considering nth-order dispersion, we can suppose that

F (T ) = (1 + MT + NT 2 + LT 3 + · · · ) =
n∑

i=0

PiT
i, where

the coefficients Pi relate to the doped fibers. There are
F ′(T ) = (M + 2NT + 3LT 2), F ′′(T ) = (2N + 6LT ),
and F ′′′(T ) = 6L in Eq. (10). Substituting these to-
gether with Eq. (10) into the second one of Eq. (7),
comparing the coefficients of T and calculating those by
determinant, we can get
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Substituting Eq. (11) into Eq. (10), the instantaneous
amplitude envelop function is in the form as
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Equation (12) shows that the temporal of evolution
pulse is completely decided by parameters of the doped
fibers and initial energy of the incident pulses, which is
an important propriety of self-similar asymptotic pulse.
Under the conditions of the third-order dispersion, there
are other two features in Eq. (12). One is that the gain
dispersion factor has a significance influence on the tem-
poral amplitude function. The other one is that there
is the third-order time factor T 3 in Eq. (12) because of
TOD effect, which results in the shape of evolution pulse
deviating from the parabolic asymptotic. M in Eq. (11)
shows that the evolution pulse of amplitude envelop has
deviated parabolic asymptotic model, which is consistent
with conclusions in Refs. [15–21]. Combining Eqs. (9)
and (12), the magnitude of pulse amplitudes grow expo-
nentially with z, so does Tp(z). Thus, self-similar pulses
can reach the very high energy during its evolution.

From Eq. (12), we can define the effective width of the
self-similar pulse as

Tp(z) =
1√
|N |

=

√
2

3C

18β3
2Ω6 + β2

3CgΩ4 + 9β2g2Ω2

6β2
2gΩ4 + 3g3 + 4β2

3β2CΩ6
. (13)

When β3 = 0, Tp(z) =
√
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Cg
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and L = 0, there is F (T ) = (1+NT 2) in Eq. (11), which
is a typical example of parabolic asymptotic self-similar
pulse temporal amplitude[15,16].

Substituting Eqs. (4) and (5) into the second one of
Eq. (3), we get
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Analyzing variation properties of spatial and temporal in
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Fig. 1. Evolution of self-similar pulse in Eq. (1).

Fig. 2. Comparison of profiles of self-similar pulse with TOD
affection. (a) β3>0; (b) β3<0.

Fig. 3. Comparison of the chirp of self-similar pulse with TOD
affection.

Eq. (14), we can get
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We can get the self-similar phase function from the first
one in Eqs. (15), (8), and (2)

Φ(z) = B0(0, T0)− 20β2γzgf2
0

Ω2(6β2
2 + β2

3Ω2)

− 20β2γf2
0

6β2
2 + β2

3Ω2
T 2, (16)

where B0(0, T0) is an arbitrary initial phase constant.
From Eq. (16), we can get the self-similar chirp function
as
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Equation (17) shows that linear chirp of the self-similar
evolution pulse is only decided by the parameters of

doped fibers and initial energy of the incident pulses.
The linear chirp is the outcome of the balance among
gain, nonlinearity, gain dispersion, and self-phase modu-
lation (SPM), while self-similar profile of intensity comes
from the high gain in doped ion fibers.

The analytical results of the Eqs. (4), (9), (12), (15),
and (16) present a general description of the self-similar
evolution with TOD in doped fiber amplifiers. The am-
plitude function is
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and the phase function is Eq. (16).
In order to confirm our analytical results, we have nu-

merically calculated Eq.(1) and compared the analytic so-
lutions in intensity profiles and chirp properties. Here, we
assume that the doped fibers parametric conditions are Ω
= 960 ps−1, β2 = 69×10−3 ps2m−1, β3 = ±1.85×10−3

ps3m−1, γ = 1.5×10−3 W−1m−1, and g = 0.378 m−1.
Gaussian input pulse incident energy is Uin= 30 pJ, its
initial pulse width is T0 = 400 fs, and the center wave-
length is λ0 = 1550 nm. Figure 1 is the power profile
of evolution pulse from Gaussian input pulse to the self-
similar pulse of Eq. (1) in 0−8 m propagation distance.
Figures 2(a) and (b) are power and chirp curves for self-
similar pulse of analytical and numerical solution at 8-m
location of the propagation distance, respectively. There
are obvious differences between the right part of Fig. 2(a)
and left part of Fig. 2(b) originated from the TOD af-
fection in Eq. (18). That is just what the TOD results
in the asymmetry of the curves in Fig. 2. It shows that
the asymmetry of the curves originates from the TOD
affection[17,21].

Figure 3 shows that the linear chirp of the evolution
pulse center is all valid either in analytical solutions or
in numerical solution of high-order dispersion affect of
Eq. (1). We also note that there is a little difference
between the analytical and simulation solutions in Fig.
2. The reasons can be deduced that the analytical solu-
tion of self-similar pulse evolution is based on the sym-
metry reduction method which has been approximated
in Eq. (10)[15,16]. The results in Refs. [17, 21] have
showed that the third-order dispersion can change the
profiles of power (delaying pulses peak) and spectrum
distortion(causing oscillation in pulses leading and rear-
ing). In the linear chirp of self-similar evolution scope
(about 6 ps), our theoretical results are consistent with
numerical simulations. We have noted that the vibration
and intense peak of the simulation in the right part of
Fig. 3 may originate in numerical calculating from com-
puter simulation, which have exceeded the scope of linear
chirp of self-similar evolution.
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In conclusion, based on analytic method of symmetry
reduction in normal GVD region with gain dispersion and
the third- order dispersion, we get the self-similar pulse
evolution analytical solutions of G-LE. To our knowl-
edge, this is the first time to provide the general ana-
lytic forms describing self-similar pulse in high-order dis-
persion influence limited by the effect of transition in
realistic doped fibers, which will give strong theoretical
backing to study the high energy and the high power self-
similar pulses in nonlinear optics, ultra-fast optics, and
transient optics fields.
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Opt. Express 15, 8252 (2007).

14. A. Chong, W. H. Renninger, and F. W. Wise, Opt. Lett.
33, 1071(2008).

15. J. Feng, W. Xu, S. Li, W. Chen, F. Song, M. Shen, and
S. Liu, Acta Phys. Sin. (in Chinese) 56, 5835 (2007).

16. J. Feng, W. Xu, S. Li, and S. Liu, Science in China G
51, 299 (2008).

17. Q. Zhang, W. Xu, J. Feng, and S. Liu, Acta Photon. Sin.
(in Chinese) 37, 30 (2008).

18. W. Liu, W. Xu, J. Feng, W. Chen, S. Li, and S. Liu,
Chin. Phys. B 17, 1025 (2008).

19. Y. Sun, S. Fu, J. Wang, Z. Sun, Y. Zhang, Z. Tian, and
Q. Wang, Chin. Opt. Lett. 7, 127 (2009).

20. X. Zhong and A. Xing, Chinese J. Lasers (in Chinese)
36, 391 (2009).

21. Y. Wang, C. Ma, X. Ying, and D. Zhang, Acta Opt. Sin.
(in Chinese) 29, 632 (2009).

22. G. P. Agrawal, Nonlinear Fiber Optics, Third Edition &
Applications of Nonlinear Fiber Optics (Academic Press,
Boston, 1995)


